
NASA/TR-2004-212819

Product-oriented Software Certification Process for
Software Synthesis

Stacy Nelson

February 2004

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoreti-
cal analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA’s counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent
of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific and
technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

The NASA STI Program Office . . . in Profile

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer-
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TR-2004-212819

Product-oriented Software Certification Process for
Software Synthesis

Stacy Nelson
Ames Research Center, Moffett Field, California

February 2004

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
(301) 621-0390 (703) 487-4650

Product-oriented Software Certification
Process for Software Synthesis

FOR

NASA Ames Research Center

Dated: September 25, 2003
Contributors (in alphabetical order by first name):
 Stacy Nelson, Nelson Consulting (POC)
 Bernd Fischer, RIACS
 Ewen Denney, QSS
 Johann Schumann, RIACS
 Julian Richardson, RIACS
 Phil Oh, RIACS

Product-oriented Software Certification Process for Software Synthesis Page 2

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY..5
2. INTRODUCTION..6

2.1. Certifiable Software Synthesis...6
2.2. Other Standards Promoting Formal Proofs ...7

2.2.1. Canadian Nuclear Power Industry: CE-1001-STD ..7
2.2.2. European Defence Industry: DEF STAN 00-55 ...8
2.2.3. European Transportation Industry: EN 50128 ...9

2.3. Traditional Process-Oriented Certification...11
2.4. Safety Case ...11
2.5. Underwriter’s Laboratory (UL) Product-Oriented Approach ..12
2.6. Product-oriented versus Process-oriented Approach..12

3. PRODUCT-ORIENTED LIFE CYCLE ..13
3.1. Typical Process-Oriented Life Cycle ...14

3.1.1. System Requirements...14
3.1.2. System Architectural Design...15
3.1.3. Software Requirements Analysis ..15
3.1.4. Software Architectural Design...15
3.1.5. Software Detailed Design ...15
3.1.6. Software Coding..15
3.1.7. Software Unit Testing..16
3.1.8. Software Integration..16
3.1.9. Software Qualification ...16
3.1.10. System Integration ..16
3.1.11. System Qualification Testing ..16

3.2. Proposed Product-Oriented Life Cycle ..17
4. PRODUCT-ORIENTED SAFETY CASE..19
5. APPROVAL PROCESS ...20
6. TOOLS ...22

6.1. For more information ...24
6.2. How Synthesis Tools Compare To Traditional V&V Tools ..26

6.2.1. Coverage...26
6.2.2. Other testing strategies...26

6.3. Certification of Synthesis Tools ...27
7. ARTIFACTS..28
8. APPENDIX A: ACRONYMS ..30
9. APPENDIX B: GLOSSARY ...31
10. APPENDIX C: SAMPLE SYNTHESIZED SDD...32

10.1. Software Design Document ...32
10.1.1. Summary...32
10.1.2. Input Specification...32

10.1.2.1. Textual Input Specification ...32
11. APPENDIX D: COMPARISON OF SYNTHESIZED SDD TO STANDARDS37

11.1. MIL STD 498..38
11.1.1. Conclusions...38
11.1.2. Recommendations ..38

11.2. IEEE 12207..39
11.2.1. Conclusions...39
11.2.2. Recommendations ..39

11.3. DO-178B..39
11.3.1. Conclusions...39
11.3.2. Recommendations ..39

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 3

12. APPENDIX E: SAFETY DOCUMENT GENERATOR...40
12.1. SAFETY EXPLANATIONS ..41

13. REFERENCES...43

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 4

RECORD OF REVISIONS
REVISION DATE SECTIONS INVOLVED COMMENTS

Initial Delivery

8/15/03

All Sections Draft for review

Update 9/25/03 Sections 2.5 and 2.6 Version 1.0 finished

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 5

1. EXECUTIVE SUMMARY

The purpose of this document is to propose a product-oriented software certification process to facilitate
use of software synthesis and formal methods. Why is such a process needed? Currently, software is
tested until deemed bug-free rather than proving that certain software properties exist. This approach
has worked well in most cases, but unfortunately, deaths still occur due to software failure. Using formal
methods (techniques from logic and discrete mathematics like set theory, automata theory and formal
logic as opposed to continuous mathematics like calculus) and software synthesis, it is possible to reduce
this risk by proving certain software properties. Additionally, software synthesis makes it possible to
automate some phases of the traditional software development life cycle resulting in a more streamlined
and accurate development process.

The product-oriented approach views software components like individual units that can be certified
similar to the Underwriter’s Laboratory (UL) certification for tangible products, like fireproof doors. To
certify that a door is fireproof, UL provides specifications for building a fireproof door then tests the door to
ensure it meets these specifications. If the door passes the test, then it is certified as fireproof. While this
approach is similar to the traditional software development process, it differs in one important way: the
door has been proven to be fireproof, not merely tested until it is believed to be fireproof. Properties of
software components can be tested and certified in the same manner.

The NASA Automated Software Engineering (ASE) team has developed techniques and tools, called

software synthesis, to check the software components using a process similar to Underwriter’s
Laboratory certification process. NASA ASE provides guidelines for building formal
specifications. Then, using these formal specifications, special tools generate the software and
attempt to prove, via mathematical means, that a property has been satisfied. If the software
properties can be proven mathematically, then it is deemed to be certified and the safety analysis
based on the mathematical proof becomes the certificate.

In order to explain the details of the proposed product-oriented certification process, this document
contains the following sections:

• Introduction – contains the definition and rationale for product-oriented software certification
including an overview of software synthesis. Also, discusses industry standards based on formal
proofs and the benefits of the product-oriented approach versus a traditional process-oriented
approach.

• Product-oriented life cycle – includes a review of the traditional software life cycle and description
of the new product-oriented life cycle. The new product-oriented life cycle describes automation
of some life cycle phases for software components meeting synthesis criteria. These automated
techniques can also reduce development costs because they can replace an infinite amount of
testing by proving that properties are correct.

• Product-oriented safety case – compares the traditional safety justification (called a “Safety
Case”) to a product-oriented safety justification

• Approval/Certification Process - reviews the rationale behind traditional Test Readiness Review
(TRR), Flight Readiness Review (FRR) and Approval/Certification Decision making. Explains
how product-oriented certification can streamline the decision making process and provide
greater degree of safety assurance with lower development costs.

• Tools – describes tools to accomplish product-oriented certification including a description of
software synthesis tools, comparison of synthesis to traditional V&V tools and a discussion of
certification of synthesis tools.

• Artifacts - lists proposed artifacts and/or enhancements to traditional artifacts for product-oriented
software certification, including automation of the production of the Software Design Document to
improve accuracy of design while reducing development costs.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 6

2. INTRODUCTION

Safety is a property of a system/software meaning that the system/software will not endanger human life
or the environment. Safety-critical means that failure or design error could cause a risk to human life.
Examples of safety-critical software can be found in nuclear reactors, automobiles, chemical plants,
aircraft, spacecraft, et al.

Mission critical means the potential loss of capability leading to possible reduction in mission
effectiveness1 Examples of mission critical software can be found in unmanned space missions like Deep
Space One and others.

Certification is the recognition by the certification authority that a software product complies with the
requirements2. In the case of tangible items like a fireproof door, the Underwriter’s Laboratory has a
certification process whereby the door (having been built to a particular specification) is then torched (also
of particular specification). If the door remains intact and doesn’t burn, then it is certified as being
fireproof.

Historically, software certification has been more complex and risky than certification of fireproof doors.
Traditional methods involve review of artifacts to ascertain that the humans constructing the software
have sufficient expertise and checks and balances to ensure safety. Generally, there is no proof that
software is accurate, but rather an exhaustive (or as exhaustive as the budget allows) effort to find and
remove anomalies (bugs).

For safety-critical software, a product-oriented approach like that used by UL would make it possible for
software reviewers to rely upon proof that software is accurate rather than just trusting it is bug-free.
However, until recently, this type of product-oriented certification was too time-consuming and expensive
because it required highly skilled mathematicians. Fortunately, the NASA Automated Software
Engineering group devised a way to automate these proofs. It is called software synthesis and
automated analysis. Using software synthesis, it becomes increasingly more feasible to certify software
components using a process similar to UL fireproof door certification.

The following section contains an overview of software synthesis. Subsequent sections describe nuclear
power, defense and transportation industry standards supporting formal proofs. There is a discussion
about the rationale for traditional certification techniques and an explanation of the Underwriter’s
Laboratory product-oriented certification technique. Finally, the benefits of the product-oriented approach
over the traditional process-oriented approach are identified along with new software development
artifacts and enhancements to traditional artifacts.

2.1. Certifiable Software Synthesis
Software synthesis is a technique for establishing that software is safe based on mathematical proofs. By
adding special assertions to code, it is possible to analyze the code and produce a mathematical proof of
correctness. This proof is then sent to a proof checker which says “yes” the proof is correct or “no” it is
not. At NASA, this technique has been automated so that it occurs quickly and accurately. For purposes
of certification, a certificate is a safety explanation of the mathematical proof such as the example in
Appendix E.3

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 7

Sample Specification

Figure 1: Software Synthesis

2.2. Other Standards Promoting Formal Proofs

The following standards support a product-oriented approach that relies upon formal methods including
use of formal proofs:

• CE-1001-STD Rev. 1, Standard for Software Engineering of Safety-Critical Software, CANDU
Computer Systems Engineering Centre for Excellence, January 1996 – used in Canada’s Nuclear
Power Industry

• DEF STAN 00-55, Requirements for Safety Related Software in Defence Equipment Part 1:
Requirements and Part 2: Guidance, U.K. Ministry of Defence

• EN (European Norms) 50128:1997, Railway Applications: Software for Railway Control and
Protection Systems, the European committee for Electrotechnical Standardisation (CENELEC)

2.2.1. Canadian Nuclear Power Industry: CE-1001-STD

Adopted in 1990, CE-1001-STD Rev. 1 focuses on three categories of safety systems in a nuclear power
plant: shutdown systems, emergency coolant injection systems and nuclear generating containment
systems. The proposed lifecycle includes: software development, verification and support processes
(planning, configuration management and training). CE-1001-STD levies a minimum set of requirements
on each lifecycle phase including specific quality objectives, quality attributes and fundamental principles
that must apply to safety-critical software.

Primary quality objectives are safety, functionality, reliability, maintainability and reviewability. Secondary
quality objectives are portability, usability and efficiency. The overall system, including software, must
meet these quality objectives.

Quality attributes are also defined for safety-critical software including completeness, correctness,
consistency, modifiability, modularity, predictability, robustness, structured, traceability, verifiability and
understandability.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 8

Fundamental principles include:

• Information hiding and partitioning – software design techniques in which the interface to each
software module is designed to reveal as little as possible about the module’s inner workings.
This facilitates changing the function as necessary

• Use of formal methods – use of formal mathematical notation to specify system behavior and to
verify or prove that the specification, design and code are correct and hence safe and reliable

• Specific reliability goals for safety-critical software

• Independence between development and verification teams

2.2.2. European Defence Industry: DEF STAN 00-55

DEF STAN 00-55 was written to capture the current best practices for developing and analyzing safety-
related software. The standard defines the following key terms:

• Safety integrity - a measure of confidence that all safety features will function correctly as
specified. The degree of safety integrity drives the design, development and assessment
activities.

• Software Integrity Levels (SILs) – software is categorized based on Software Integrity Levels
(SILs) that equate to the risk associated with the use of the software as follows:

0. Non-safety related

1. Low

2. Medium

3. High

4. Very high

Safety-critical software has SIL 4 and safety-related has SILs 1-4.

The life cycle for DEF STAN 00-55 consists of only six primary processes:

• Planning the system safety program

• Defining system safety requirements

• Performing a series of hazard analyses:

 Functional analysis to identify hazards, associated with normal operations,
degraded-mode operations, incorrect usage, inadvertent operation, absence of
functions, and human error which causes functions to be activated too fast, too
slow or in the wrong sequence

 Zonal analysis to find hazards associated with usability on the part of the end
users

 Component Failure Analysis to find failure modes and rates of software
components and the hardware where they operate

 Operating and support hazard analysis to identify hazardous tasks which must be
performed by end users and maintenance staff and ways to reduce potential for
errors

• Allocating safety targets/requirements to system components

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 9

• Assessing achievement of safety targets

• Verifying the resultant systems safety is adequate and its individual and composite
residual risk is acceptable. To accomplish safety integrity, DEF STAN 00-55 depends
upon formal methods, formal specifications and formal proofs as part of the ongoing
verification of completeness, consistency, correctness and unambiguousness of software
engineering artifacts, particularly safety-related functions and features.

To assess risk, DEF STAN 00-55 defines:

• Four hazard severity categories (catastrophic, fatal, severe and minor)

• Six likelihood categories (frequent, probable, occasional, remote, improbable and implausible)

• Risk assessment matrix based on the hazard severity and likelihood with three levels (intolerable,
undesirable and tolerable).

2.2.3. European Transportation Industry: EN 50128

EN 50126
Railway Applications – Dependability

for Guided Transport Systems –
Part 2: Safety

TC 256
Mechanical Safety

EN 50155
Vehicle

Electronics
Safety

EN 50128
Software Railway

Control and Protection
Systems

ETSI/CMG
Telecom

Dependability

EN 50129
Safety-Related

Electronic Railway
Control and

Protection Systems

Figure 2: Structure of CENELEC Railway Dependability Standards

EN 50128 identifies “methods which need to be used in order to provide software which meets the
demands for safety and integrity”. It is organized around the concept of Software Integrity Levels (SILs)
defined above.

All modules belong to the highest SIL unless partitioning can be demonstrated. Since SILs correspond to
risk, EN 50126 defines a detailed risk classification scheme which utilizes a combination of qualitative and
quantitative measures. EN 50126 defines six probability levels (incredible, improbable, remote,
occasional, probable, frequent) and four safety hazard severity levels (catastrophic, critical, marginal,
insignificant). It then correlates the hazard probability levels and safety hazard severity levels into four

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 10

risk regions (intolerable, undesirable, tolerable and negligible). The standard provides directives for each
region, for example: risk in the intolerable region shall be eliminated.

EN50128 defines seven lifecycle phases (requirements, specification, architecture specification, design
and development, software/hardware integration, validation, assessment and maintenance). Two
activities are ongoing throughout the lifecycle including: verification and quality assurance. Development
begins only after system-level performance, safety, reliability and security requirements have been
allocated to software.

EN 50128 also identifies activities, techniques and measures to be performed throughout the lifecycle
based on the SIL to be achieved and assessed as shown in the table below. The following table contains
techniques and measures by SIL for each lifecycle phase. Formal methods are recommended (R) for
SIL 1-2 and highly recommended (HR) for SIL 3-4.

Table 1: EN 50128 Assignment of Techniques and Measures By SIL and Lifecycle Phase

Techniques and Measures SIL 1-2 SIL 3-4 Lifecycle Phase

Structured methodologies HR HR Requirements, Specification, Design and
Development

Formal Methods (CCS, CSP, HOL, LOTOS,
OBJ, Temporal Logic, VDM, Z)

R HR Requirements, Specification, Design,
Development and Verification

AI, Dynamic Reconfiguration NR NR Architecture Specification

Safety Bags, Recovery Blocks, Retry Fault
Recovery

R R Architecture Specification

Partitioning, Defensive Programming, Fault
Detection and Diagnosis, Error Detection, Failure
Assertion, Diverse Programming, SFMECA, SFTA

R HR Architecture Specification

Design and coding standards

Data Recording and Analysis

HR M Design, Development and Maintenance

Object-oriented Analysis and Design (OOAD) R R Design and Development

Modular Approach M M Design, Development

Static Analysis

Dynamic Analysis

HR HR Verification

Software Quality Metrics R R Verification

Functional Testing HR HR SW/HW Integration and Validation

Probabilistic Testing

Performance Testing

R HR SW/HW Integration and Validation

Modeling R R Validation

Checklists

Static Analysis

Field Trials

HR HR Assessment

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 11

Techniques and Measures SIL 1-2 SIL 3-4 Lifecycle Phase

Dynamic Analysis

SFMECA, SFTA

Common Cause Failure Analysis

R HR Assessment

Cause Consequence Diagrams

Event Tree Analysis

Markov Modeling

Reliability Block Diagrams

R R Assessment

Change Impact Analysis HR M Maintenance

M – Mandated, HR – Highly Recommended, R – Recommended, NR – Not Recommended, F - Forbidden

2.3. Traditional Process-Oriented Certification

Since safety-critical aerospace software is prevalent, what is the rationale behind certification of such
software? In other words, how do engineers know when a new software product works properly and is
safe to fly?

In the United States, software must undergo a certification process described in various standards by
various regulatory bodies including NASA and the Requirements and Technical Concepts for Aviation
(RTCA) which is enforced by the Federal Aviation Administration (FAA). While each NASA center and
the FAA have unique certification processes, they share the same idea. Regulatory authorities will be
looking for evidence that all potential hazards have been identified and that appropriate steps have been
taken to deal with them. Europe has similar certification processes.

2.4. Safety Case

In order to meet current regulatory guidelines in the aerospace industry, developers construct a safety
case as a means of documenting the safety justification of a system. The safety case is a record of all
safety activities associated with a system throughout its life. Items contained in a safety case include the
following:

• Description of the system/software

• Evidence of competence of personnel involved in development of safety-critical software and any
safety activity

• Specification of safety requirements

• Results of hazard and risk analysis

• Details of risk reduction techniques employed

• Results of design analysis showing that the system design meets all required safety targets

• Verification and validation strategy

• Results of all verification and validation activities

• Records of safety reviews

• Records of any incidents which occur throughout the life of the system

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 12

• Records of all changes to the system and justification of its continued safety

The traditional safety case hinges on the expertise of key personnel and their ability to document risk
reduction techniques and the historical reliability of the software. It does not generally include proof that
software is safe because in the past, it would have been too time consuming for mathematicians to
develop this proof manually.

For more information about traditional certification processes, see NASA/CR--2003-212806 Certification
Processes for Safety-Critical and Mission-Critical Aerospace Software which contains:

• Standards For Safety-Critical Aerospace Software – lists and describes current standards
including NASA standards founded upon IEEE/EIA 12207, as well as RTCA DO-178B

• Class A Versus Class B Software – explains the difference between two important classes of
software: Class A dealing with safety-critical software and Class B for mission critical software

• DO-178BClass A Certification Requirements – describes special processes and methods
required to obtain Class A certification for aerospace software flying under auspices of the FAA

• Dryden Flight Research Center (DFRC) Certification Process – documents the certification
process used at Dryden for new aerospace software like the Intelligent Flight Control System
including neural networks that adapt to flight conditions

• Jet Propulsion Lab (JPL) Approval Process – describes the approval process used at JPL for new
space software like the Mars Smart Lander

2.5. Underwriter’s Laboratory (UL) Product-Oriented Approach

Underwriter’s Laboratory (UL) primarily focuses on safety certification of third party products because UL
has no vested interest in the product; and therefore, can provide a more accurate assessment of safety
for that product. Similarly, the Automated Software Engineering Group at Ames Research Center under
the leadership of Dr. Michael Lowry can provide an assessment of software safety by leveraging
certifiable software synthesis techniques.

UL testing procedures are based on standards. For example, UL 10A (Tin-Clad Fire Doors) and UL 10B
(Fire Tests of Door Assemblies) are standards for fireproof doors. UL 10A contains the specification and
is analogous to a software requirements specification (SRS) document. UL 10B describes test
procedures and compares to the Verification and Validation Plan for software.

Upon completion of tests by UL, third parties are provided results via a formal test report much like the
report provided by a software review board. However, when a product is certified by UL, the UL marking
may be affixed showing consumers that the product has a safety certification. Currently, there is no such
stamp of approval for software because the current process-oriented approach to certifying software
cannot provide that level of assurance. At best, review boards for software approve deployment based
on their belief that the development team has followed a sound process and that software demonstrations
of key scenarios indicate that software is safe for all scenarios. Clearly, a product-oriented approach to
software resulting in a certificate like UL would provide much more confidence that software is safe and
reliable.

2.6. Product-oriented versus Process-oriented Approach

There are advantages and challenges to both the product-oriented and process-oriented approach to
certification of safety-critical software. The advantages of the product-oriented approach for certification
include:

• Mathematical proof that software components are accurate

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 13

• Easy third party (UL type process) certification process

Challenges revolve around scalability of this approach. Currently, it is only available at the software
component level.

The process-oriented approach has the advantage of a well-established track record for success;
however, it relies on human engineering and documentation which is time consuming and, unfortunately,
software failures still result in loss of human life. It also limits the type of software that can be
constructed. For example, neural networks have been developed that can be embedded into flight
control systems making it possible for pilots to safely fly and land damaged aircraft. However, due to the
complexity of neural networks, testing via traditional methods is generally not feasible.

In order to capitalize on the advantages of both approaches, this proposal describes a hybrid approach
which combines key strengths from both the product and process-oriented approaches. The hybrid
approach makes possible a smooth transition to new product-oriented techniques. It provides an avenue
for the product-oriented approach to establish a track record for success (defined as better, safer,
cheaper software).

The hybrid approach proposes automating part of the lifecycle resulting in a lifecycle much like the
nuclear power, defense and transportation standards already relying upon formal proofs. Software
meeting the synthesis criteria described below can be synthesized and other software can be developed
via a traditional approach.

Synthesis Criteria

Synthesis is most cost effective when code is
generated for a product family with sufficient
variation that static libraries would not suffice.

Figure 3: Synthesis Criteria

Kalman filters are an example of code meeting synthesis criteria because Kalman filters are widely used
in aerospace and other applications to reduce noise from sources like sensors. Additionally, Kalman
filters are too complex to be coded into a static library. There are also software properties that lend
themselves well to certification using annotations that can be generated as part of code synthesis
process. Examples of these properties include: array safety (checking that array boundaries cannot be
exceeded) and safety of mathematical functions (ensuring that divide by zero errors do not occur).

It is important to distinguish between software functionality and software safety features. Traditionally,
software has been verified for functional correctness; however certifiable software synthesis makes it
possible to check safety correctness properties to make sure the software won’t crash (e.g. array go out
of bounds).

As confidence is cultivated for the product-oriented approach and more advanced synthesis techniques
are developed, the hybrid approach can be expanded. Software synthesis can be applied to unique
software components then to software integration, software architecture, etc. It can ultimately ensure the
accuracy of the entire system.

3. PRODUCT-ORIENTED LIFE CYCLE

This section provides an overview of a typical life cycle then discusses changes necessary for a product-
oriented life cycle.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 14

3.1. Typical Process-Oriented Life Cycle
The following diagram shows the relationship between V&V and a typical, traditional life cycle described
in current software development standards.

Software
Architectural Design

Software
Detailed Design

Software
Qualification Testing

Software Integration

Software
Unit Testing

Software Coding

KEY

Phase

Product

Verify

Validate

System
Integration

System
Qualification Testing

System
Architectural Design

Software
Requirements Analysis

System
Requirements

Figure 4: Typical Life Cycle Phases

A traditional system development project begins at the upper left of the diagram with system
requirements, the top-level description of the operation of the system. V&V also begins at the inception of
the development project as shown by the arrow pointing from system qualification testing (upper right) to
system requirements. First, an overall V&V plan is developed. Initial V&V activities strive to ensure that
system requirements can be tested. As the project matures, V&V is performed at each phase as shown
by the arrows between phases. The following sections provide an overview of each life cycle phase.

3.1.1. System Requirements

Traditional system requirements must be stated in natural language in clear, concrete terms so they can
be tested. An example requirement might be: software must execute at approximately 40Hz on an ARTS
II computer. When writing requirements special consideration should be given to the following areas:

• Hardware Specifications: Description of hardware needs including CPU size and speed, number
of CPUs (as may be used in a multi-processing), available on-board memory, interfaces between
multiple cards in a system for data throughput, and any possible considerations for future
extensions.

• Operating Capabilities: Description of how the product behaves. Requirements should include
the operating frequency, allowed memory usage and desired computational precision. Modes of
operation should also be discussed.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 15

• Operating Environment: environment where the system will operate including the target
performance envelope

• Algorithmic Capabilities: These include definitions of algorithms and pre-analyzed failure
conditions.

• Data Recording Capabilities: Description of the kind of data that needs to be recorded including
input data, output data, and data internal to the operation of the product

• Human User Interfaces: Description of what is needed so humans can use the system effectively

3.1.2. System Architectural Design
The system architectural design establishes a high-level software and hardware design based upon the
system requirements. This begins the separation of the system requirements by function into system
modules or sub-systems and establishes the means of data and control communication between the
modules. The system architectural design should include a description of what the product does, what
data is to be processed, and how it is interfaced with other systems/subsystems.

3.1.3. Software Requirements Analysis
Software requirements analysis is necessary to ensure the software requirements are based on the
system requirements. Special software requirements for the product might include:

• Algorithmic Capabilities: More detailed requirements describing the product algorithms

• Hardware Specifications: requirements including allotted memory usage, allotted processor
usage and perhaps constraints on specific execution times

• Operating Capabilities: explanation of operating capabilities and the different modes of operation

• Inputs/Outputs: Inputs and outputs to the product should be identified, as well as data recording
capabilities. Software requirements add refinement to system requirements stating specifically:

o Which data was being recorded

o Precision of the recorded data

o Frequency with which this data is recorded

o Order this data is recorded

o File format the data is recorded in and a description of how data is written to a file (one
continuous file, sequences of files, single file which is always written to but never
appended…)

• Human User Interfaces: Description of any human interface

3.1.4. Software Architectural Design

The software architectural design decomposes the high-level software design and describes software
components and constructs needed to satisfy the software requirements.

3.1.5. Software Detailed Design
The software detailed design explains the details of how the software requirements will be satisfied. It
should include a description of precise code constructs required to implement the product.

3.1.6. Software Coding
The software coding stage should include the actual product code. In some situations, a product may be
implemented in a modeling language such as MATLAB/Simulink or Matrix-X and is auto-coded from the

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 16

model into a desired programming language. In these situations, the software code would include the
original system models.

3.1.7. Software Unit Testing

Software unit testing should include both black and white box testing.

3.1.8. Software Integration
Software integration should verify that the product as a whole works properly.

3.1.9. Software Qualification
Software Qualification Testing should ensure that the software requirements are sufficiently detailed to
adequately and accurately describe the product.

3.1.10. System Integration
System integration testing should verify that the architectural design is detailed enough so, when
implemented, the product can interface with system hardware and software in various fidelity testbeds.

System integration involves testing the system after it has been integrated into a larger system. This can
include integration with target hardware and/or integration with onboard system computers and external
pieces of software. Test results should identify successful completion of integration tests and any
discrepancies or anomalies from expected outputs.

3.1.11. System Qualification Testing
System qualification testing should verify that the system requirements are sufficiently detailed to
adequately and accurately describe the product to ensure that, when implemented, it will interface
properly with the system in production.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 17

3.2. Proposed Product-Oriented Life Cycle

In order to understand the product-oriented approach, consider a best-case scenario where all software
requirements can be stated in formal terms resulting in automatic generation and certification of all code.
The following diagram shows this theoretical approach.

Software
Qualification Testing

KEY

Phase

Product

Verify

Validate

System
Integration

System
Qualification Testing

System
Architectural Design

System
Requirements

Software
Requirements

Analysis
(Formal

Specification)

Certified Code

Synthesized

Figure 5: Theoretical Product-Oriented Approach

The theoretical approach begins like the traditional system development project at the upper left of the
diagram with system requirements. V&V also begins like a typical system development project with
system qualification testing (upper right). The two approaches remain identical until the software
requirements analysis phase. At this point, a formal software specification is developed and validated.
Then, code is automatically generated and certified. Finally, the certified code is integrated with the
system and validated.

A formal specification is a special notation based on formal logic used to describe the properties of the
software. When software is defined using this mathematical notation, code can be generated
automatically along with one or more mathematical proofs to ensure the safety of the software. Proving
properties increases the confidence in code, thereby reducing the need to perform manual V&V, making
product-oriented software much less expensive and time consuming.

This type of theoretical approach will someday be a panacea for safety-critical systems – proven safety
and very low development costs. The NASA Automated Software Engineering group is making great
strides towards this panacea by making it possible to synthesize some software components. By
integrating synthesized code with traditional code, it is possible to improve safety and reduce cost. The
following diagram shows a hybrid approach where software meeting synthesis criteria are synthesized
and unique software components are built using the traditional approach.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 18

Software
Architectural Design

Software
Detailed Design

Software
Qualification Testing

Software Integration

Software
Unit Testing

Software Coding

KEY

Phase

Product

Verify

Validate

System
Integration

System
Qualification Testing

System
Architectural Design

Software
Requirements Analysis

System
Requirements

Software Synthesis
Formal Specification

Certified Code

Traditional Synthesized

Figure 6: Hybrid Approach

Again, the first steps of this approach are identical to traditional software development. However, during
software requirements analysis, software meeting synthesis criteria are developed using software
synthesis, and unique components are built traditionally. Both types of components are integrated in the
software integration phase and traditional V&V is performed.

Specific changes to life cycle phases include the following:

• Software requirements analysis – develop a formal specification and verify that it is correct
Note: experiments at IBM reveal that developing a formal specification for the entire system
rather than just the components to be synthesized results in a more accurate system because of
the analysis required for a formal specification. More accurate requirements generally lead to
lower downstream development costs because less time is spent solving problems resulting from
missing, conflicting or incorrect requirements.

• Software architecture design – modularize software into software meeting synthesis criteria and
unique components to take advantage of software synthesis and to maximize reusability

• Software Detailed Design – incorporate automatically generated SDD into software design
document. Appendix D contains recommendations for incorporating the SDD into projects
governed by MIL STD 498 and IEEE 12207.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 19

4. PRODUCT-ORIENTED SAFETY CASE

The safety case is a record of all safety activities associated with a system throughout its life. The
following tables lists items contained in a traditional safety case compared to items needed for a product-
oriented safety case. Differences are highlighted in bold.

Traditional Safety Case Product-oriented Safety Case

Description of the system/software Description of the system/software

Evidence of competence of personnel involved in
development of safety-critical software and any
safety activity

Evidence of competence of personnel involved in
development of safety-critical software and any
safety activity

Specification of safety requirements Specification of safety requirements including
formal specifications

Results of hazard and risk analysis Results of hazard and risk analysis

Details of risk reduction techniques employed Details of risk reduction techniques employed

Results of design analysis showing that the system
design meets all required safety targets

Results of design analysis showing that the system
design meets all required safety targets

Verification and validation strategy Verification and validation strategy including
software synthesis

Results of all verification and validation activities Results of all verification and validation activities
including certificates (safety explanation such
as example in Appendix C)

Records of safety reviews Records of safety reviews

Records of any incidents which occur throughout
the life of the system

Records of any incidents which occur throughout
the life of the system

Records of all changes to the system and
justification of its continued safety

Records including certificates for all changes to
the system and justification of its continued safety

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 20

5. APPROVAL PROCESS
The approval process for traditional certification for safety-critical software is generally the same in
military and commercial standards and across industries: the software must pass a series of reviews and
be deemed safe enough to deploy. For example, the approval process used at NASA for safety-critical
aerospace software is shown in the diagram below. Programs at NASA using this approach include the
adaptive Intelligent Flight Control System (IFCS), the Mars Science Laboratory (previously, Mars Smart
Lander, a rover to explore Mars) and Deep Space One experimental spacecraft.

X “No-Go”

Flight Operational Readiness Review
(ORR)

Returned to SW Development
Mars Rover

F-15 IFCS

Deep Space One

Test Readiness Review (TRR)

Traditional System
Certification*

Final Review

* Not to be confused with proof-based, formal certification

Figure 7: Traditional Certification Process

When systems and software are ready for approval they are reviewed by the internal project team at the
Test Readiness Review (TRR). Once the software passes this internal review, it is reviewed by an
independent team of engineers who have not worked on the project. The independent team conducts a
Flight Operational Readiness Review (ORR). When the system and software pass the ORR, the Program
Manager is notified and submits the project plans and preparations to the Final Reviewer(s). The Final
Reviewer(s) determines whether the software is approved for implementation or must return to software
development for further work.

In order for aerospace software to be implemented on commercial aircraft, it must be approved and
certified by the FAA. The FAA certification process follows DO-178B and works in much the same way as
the NASA approval process with the following exceptions:

• Technically, software is not certified, only aircraft components (flight control system, flight
management system…) are certified. However, there are rigorous guidelines to ensure the
software aspect of these components is safe, so we tend to speak about “software certification”
even though software is not certified, per se.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 21

• Negotiation is required to ensure optimal use of limited FAA review funds. A Plan for Software
Aspects of Certification (PSAC) must be written describing who, what, when, where and how the
software will be certified.

• More stringent requirements for up-to-date documentation. The FAA prefers to see
documentation updated with final software features rather than the initial documentation with
change memos attached. This reduces the complexity of reading the document; thus saving time
for the reviewers. It also makes the documentation easier to understand and use. For example,
the wiring diagrams of the Space Shuttle need to be rewritten because they contain an original
document plus multiple revisions. Workers must flip through pages of revisions to find the latest
wiring configuration. This is a slow, error-prone task.

The following diagram details the FAA approval process.

Product Is Evaluated For
Marketability And

Certifiability

FAA engineering
personnel are sometimes
consulted at this step

Preliminary Design
Completed

This is the appropriate time to
initiate certification project

Detailed Design
Completed

Certification Plan Is Prepared
And Submitted To The ACO For
Review And Approval. Plan Will

Address The System Safety
Assessment And The Software

Aspects Of Certification.

System Testing
Completed

Installation in Aircraft and
Certification Testing

Completed

Testing Plans and System Safety
Assessment Prepared and

Submitted to the ACO for Review
and Approval

Flight Test Plan and Balance of
Design approval Documents

Submitted to ACO for Review and
Approval

FAA ACO Issues
Certificate And System Is
Ready For Operational

Approval

Close consultation with FAA
engineering personnel is
essential throughout design
process to avoid new
requirements late in process

FAA witnesses many of the
systems tests for certification

FAA witnesses all of the flight
and ground tests conducted on
an aircraft for certification

Company Makes Decision
To Proceed With

Development

Idea For New Avionics
Product Is Born

Figure 8: FAA Approval Process

The approval process for the product-oriented approach remains the same as the traditional
approach except that when software developers present certificates proving software correctness to
the review boards, the reviewers will have a much greater degree of confidence that the software is
safe. This increased confidence can reduce time spent in review.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 22

6. TOOLS

This section contains three sections:

• Description of synthesis tool used for Certifiable Software Synthesis at Ames Research Center

• Comparison of the synthesis tool to traditional V&V tools

• Discussion of synthesis tool certification

Automated program synthesis aims at automatically constructing executable programs from high-level
specifications. It is usually based on mathematical logic, although a variety of different approaches exist4.
Here, we will focus on a specific approach, schema-based program synthesis, and a specific system,
AUTOBAYES.

Externally, AUTOBAYES looks like a compiler: it takes an abstract problem specification and translates it
into executable code. Internally, however, it is quite different. AUTOBAYES5 generates complex data
analysis programs from compact specifications in the form of statistical models. It has been applied to a
number of domains, including clustering, change detection, sensor modeling, and software reliability
modeling, and has been used to generate programs with up to 1500 lines of C++ code.

First, AUTOBAYES derives a customized algorithm implementing the model and then it produces an
optimized, imperative code implementing the algorithm. The following figure shows the system
architecture:

Const nat n.
Const nat c = 3
…
Data double x(I:=1..n) – gauss{mu(c(I)).sigma(c(I))).
Max pr(x | (phi, mu, sigma) for (phi, mu sigma).

INPUT PARSER

OPTIMIZER

CODE GENERATORCODE GENERATOR

TEST DATA
GENERATOR

AUTOBAYES

Internal representation

Intermediate code

Intermediate code

SY
ST

EM
 U

TI
LI

TI
ES

EQ
U

AT
IO

N

SO
LV

ER
R

EW
R

IT
IN

G
EN

G
IN

E

SYNTHESIS
KERNEL

Schema
Library

3.232323
3.342387
5.125683
3.891308
3.550812
5.412456
3.000217
2.994381
3.244621

Raw Data C/C++ Code Fitted Data

For i=0;i=n;i++ {
For j=0;j<c;j++ {

mu(j) = …
sigma(j) = …

}
}

Model specification

Figure 9: AUTOBAYES System Architecture6

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 23

In the first processing step, the given specification is parsed and converted into internal format and a
Bayesian network representing the model is constructed. Then the synthesis kernel analyzes the
network, tries to solve the given optimization task, and instantiates appropriate algorithm schemas from a
schema library. The schemas encode the domain knowledge. They contain rules to decompose the
network into independent parts, rules to search symbolically for closed-form solutions and algorithm
skeletons which are instantiated during the synthesis process. These schemas are guarded by
applicability conditions. A schema consists of a program fragment with open slots and a set of
applicability conditions. The slots are filled in with code pieces by the synthesis engine calling schemas
recursively. The conditions constrain how the slots can be filled; they must be proven to hold in the given
specification before the schema can be applied. Some of the schemas contain calls to symbolic equation
solvers, others contain entire skeletons of statistical or numerical algorithms. By recursively invoking
schemas and composing the resulting code fragments, AUTOBAYES is able to automatically synthesize
programs of considerable size and internal complexity.

Figure 9 below shows in stylized Prolog-notation a slightly simplified schema which is selected when a
function needs to be maximized. It synthesizes a code fragment C which calculates the maximum w.r.t. a
single variable X for a symbolically given function F. The applicability of this schema is restricted to cases
where a first derivative of F exists. The schema first tries to compute the maximum symbolically by
solving the equation ∂F/∂X = 0 for X. If that succeeds, it returns a single assignment. Otherwise, an
iterative numerical optimization routine must be synthesized in order to solve the given problem. Such an
algorithm consists of three code segments: finding a start value x0, calculation of the search direction p,
and the step length λ. Then, starting with x0, the maximum is sought by iteratively approaching the
maximum: xk+1 = xk + λkpk (for details see [9, 17]). Our schema assembles this algorithm by recursive
calls to schemas to obtain code fragments CInit, CSteplength, and CStepdir for initialization, calculation of
the step length, and step direction, respectively. Instantiation of code fragments in the algorithm skeleton
is denoted by <...>.

schema(max F wrt X, C) :-

exists(first-derivative(F)),

symbolic_solve(d(F, X) == 0, Solution),

if (Solution != not_found)

C = "<X> := <Solution>";

else { schema(getStartValue(F,X), CInit);
schema(getStepsize(F,X),CSteplength);

schema(getStepdir(F,X),CStepdir);

C = "{ <CInit>;
while(converging(<X>))

<X> := <X> +

<CSteplength>*<CStepdir>; }";

}.

Figure 10: Synthesis Schema (Fragment)

Schemas can also be extended in such a way that the annotations required for the certification are
generated automatically.

Thus, the synthesized program can be assembled from various (and different) parts and algorithms. The
output of the synthesis kernel is a program in a procedural intermediate language. The AUTOBAYES
backend takes this intermediate code, optimizes it and generates code for the chosen target system.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 24

Currently, we support Octave, Matlab and standalone C, but only small parts of the code generator are
system-specific; therefore, new target systems can thus be added easily.

Certification procedures for high-quality data analysis code often mandate manual code inspections.
These require that the code is readable and well documented. Human understandability is strong
requirement, even for programs not subject to these procedures, as manual code manipulation is often
necessary, e.g., for performance tuning or system integration. However, existing program generators
often produce code that is hard to read and understand. In order to overcome this problem,
AUTOBAYES generates thoroughly documented code: approximately one third of the output lines are
automatically generated comments. These comments contain explanations of the crucial “synthesis
decisions”, e.g. which algorithm schema has been used. Also, model assumptions and proof obligations
that could not be discharged during the synthesis are laid out clearly. In future versions of AUTOBAYES,
we will extend this to produce detailed, standardized design documents along with the generated code.
Furthermore, AUTOBAYES can generate code which generates artificial data for the mode, e.g. for
visualization, simulation and testing purposes.7

The following figure shows the AutoBayes system architecture, extended for code certification.

Figure 11: AutoBayes system architecture, extended for code certification8

6.1. For more information
For more information about software synthesis see the following resources:

• http://ase.arc.nasa.gov/schumann

September 25, 2003

http://ase.arc.nasa.gov/schumann

Product-oriented Software Certification Process for Software Synthesis Page 25

• Johann M. Schumann. Automated Theorem Proving in Software Engineering, Springer Verlag,
2001, xiv+228 pages, ISBN 3-540-67989-8

• Johann Schumann, Bernd Fischer, Mike Whalen, and Jon Whittle.
Certification Support for Automatically Generated Programs
In Proc. HICSS'36, 2003

• Johann Schumann, Bernd Fischer, Mike Whalen, and Jon Whittle.
Certification Support for Automatically Generated Programs
In Proc. HICSS'36, 2003

• Bernd Fischer and Johann Schumann
AutoBayes: A System for Generating Data Analysis Programs from Statistical Models.
Journal Functional Programming, 2002 (in print)

• Mike Whalen, Johann Schumann, and Bernd Fischer.
Synthesizing Certified Code.
In Proceedings FME 2002, LNAI, Springer, 2002.

• Mike Whalen, Johann Schumann, and Bernd Fischer.
Combining Program Synthesis with Automatic Code Certification (System Description)
Conference on Automated Deduction (CADE) }, LNAI, Springer, 2002.

• Bernd Fischer and Johann Schumann
Automated Synthesis of Statistical Data Analysis Programs
Proc. Workshop SDP (Science Data Processing) 2002, NASA Goddard, 2002.

September 25, 2003

http://ase.arc.nasa.gov/schumann/publications/papers/2003/hicss-36.html
http://ase.arc.nasa.gov/schumann/publications/papers/2003/hicss-36.html
http://ase.arc.nasa.gov/schumann/publications/papers/2002/fme2002.html
http://ase.arc.nasa.gov/schumann/publications/papers/2002/cade02.html
http://ase.arc.nasa.gov/schumann/publications/papers/2002/goddard2002.html

Product-oriented Software Certification Process for Software Synthesis Page 26

6.2. How Synthesis Tools Compare To Traditional V&V Tools

6.2.1. Coverage
Coverage relates to how much of the code can be tested. Generally, test plans cannot achieve 100%
coverage because the complexity of code makes it difficult to think of all necessary test cases. Even if all
test cases could be conceived, it might take many years to complete them. Therefore, important code
components and pathways through the code are tested.

Since properties of synthesized code are proven correct by mathematical means; coverage comes much
closer to 100%.

6.2.2. Other testing strategies
The following table compares traditional testing techniques to those needed for software synthesis:

Traditional Testing Techniques Synthesis

Individual test cases and test scripts Certification of safety properties to ensure that some
aspects of code are correct. Corresponds to 100%
coverage but limited checking that output is correct.

Also, synthesis makes it possible to automate generation
of test cases from formal specification.

Code review Preparation for code review can be simplified using
sophisticated generated documentation

Proof of software properties provides higher degree of
confidence in synthesized software

Advanced testing including Static
analysis

Code checked by safety policies

Simulation of scenarios In the future, it may be possible to generate environment
properties and simulation scenarios

Regression testing,
Animation/Visualization

Regression testing containing automated test cases, as
well as other test cases

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 27

6.3. Certification of Synthesis Tools

There are two common approaches to certifying V&V tools:

• Traditional certification process (such as the tool qualification required by DO-178B) where the
V&V tool is rigorously tested until deemed correct by a review board. After certification the tool
cannot be modified or enhanced without going through the same rigorous process and being re-
certified. This is a time-consuming and expensive process. It can result in V&V tools which are
quickly outdated as hardware improves or the complete lack of V&V tools for new types of
software like the neural adaptive flight control system in the Intelligent Flight Control System
(IFCS).

• Qualification of the tool “kernel” – This approach divides the tool into two parts: the kernel and
the supporting code. For example, SKATE is an air traffic control tool containing a kernel, TSAFE
(a collision avoidance system for aircraft), and supporting code for graphical user interface, etc.
TSAFE was certified via traditional means and cannot be changed without re-certification. The
supporting code can be enhanced for improved display equipment, etc. This approach results in
trusted code for safety-critical functions and flexible code that can be improved to meet future
needs in a cost effective fashion.

Synthesis tools fall easily into the latter category. The proof checker is the kernel to be certified via
traditional means and the supporting code should remain flexible to cost effectively meet future needs as
they arise.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 28

7. ARTIFACTS

Artifacts are documents, code, presentations or other materials resulting from the software development
process. Examples of artifacts include the Software Requirements Standards (SRS), Software Design
Document (SDD), source and object code, et al. This section contains a list of common artifacts.

Examples of precise content for each artifact depend upon the governing standards for the project (i.e., in
the United States, defense projects are subject to MIL-STD 498, aerospace projects are subject to DO-
178B and/or NASA standards, etc.)

Artifacts should be updated regularly so they contain the most recent information. In fact, a successful
presentation to the FAA for certification must include updated artifacts rather than original documentation
with modification notifications.

Typical artifacts relevant to the product-oriented approach are listed below. New artifacts specific to
software synthesis are highlighted in bold and proposed enhancements, if any, are described. Depending
upon the project, not all these artifacts may be required.

• Requirements:

o Software Requirements Standards (SRS) – traditional SRS is sufficient

o Software Requirements Data - traditional software requirements data is sufficient

o Formal Requirements – a new artifact containing a mathematical description of the
software. Called a specification in AUTOBAYES.

• Plans:

o Certification Plan – should include the process and tools for generating synthesized code
and how the synthesized code will be integrated into the system. Should also describe
the certification or proof including any applicable research. NASA/CR contains
information about the Plan for Software Aspects of Certification (PSAC) required by DO-
178B.

o Software Development Plan (SDP) – should contain a description of software synthesis
to be used for selected software components

o Software Verification Plan (SVP) – should contain new techniques to verify software
synthesis techniques

o Software Test Plan – should include tests for synthesized code and integration of
synthesized code into the system

o Software Configuration Management Plan (SCMP) – should contain the version of
synthesized code to be used

o Software Quality Assurance Plan (SQAP)

• Design Documents:

o Software Design Standards (SDS) – should contain standards for software synthesis

o Software Code Standards – should contain code standards for software synthesis

o Software Design Document - automatically generated by software synthesis tools for
synthesized software components. A sample synthesized SDD is shown in Appendix C.
Appendix D contains a comparison of the synthesized SDD to standard software design
documents for MIL STD 498, IEEE/EIA 12207 and DO-178B. It also describes
recommendations for enhancing standard design documents with the synthesized SDD.

• Configuration Management:

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 29

o Software Configuration Index – should contain version of synthesized code

o Software Configuration Management Records - should contain reports for the synthesis
process

• Code:

o Source Code – synthesized code will be generated automatically from formal
requirements

o Executable Object Code – should include synthesized code

• Results of V&V:

o Problem Reports – not expected for synthesized code because synthesized software has
been proven correct. Problem reports for synthesized code should require review of
formal requirements.

o Software Verification Cases and Procedures

o Software Verification Results – can rely on the synthesis process to tie generated code to
requirements. Should reduce manual tracking efforts.

o Software Quality Assurance Records

• Summary:

o Software Accomplishment Summary

• Certificate – a safety explanation of the mathematical proof from the proof checker described in
Appendix E

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 30

8. APPENDIX A: ACRONYMS

Term Definition

ANSI American National Standards Institute

ARC Ames Research Center

CM Configuration Management

DFRC Dryden Flight Research Center

FAA Federal Aviation Administration

EIA Electronic Industries Association

IEC International Electro-technical Commission

IEEE Institute of Electrical and Electronic Engineers

ISO International Organization for Standardization

IV&V (NASA) Independent Verification & Validation

JAA Joint Aviation Authorities

JPL Jet Propulsion Lab

MIL STD Military Standard

NASA National Aeronautics and Space Administration

NPD NASA Policy Directive

NPG NASA Procedures and Guidelines

RTCA Requirements and Technical Concepts for Aviation

USA United Space Alliance

V&V Verification & Validation

Note: More Acronyms: http://www.ksc.nasa.gov/facts/acronyms.html

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 31

9. APPENDIX B: GLOSSARY

Artifact: Document, code, presentation or other materials resulting from the software development
process. Examples of artifacts include the Software Requirements Standards (SRS), Software Design
Document (SDD), source and object code, et al. Section 7 contains a list of common artifacts.

Black Box testing: Requirements-driven testing where engineers select system input and observe
system output/reactions

Certifiable Software Synthesis: Technique for generating software from formal logic and establishing
that it is correct based on mathematical proofs

Certification: Legal recognition by the certification authority that a software product complies with the
requirements9

CSCI: Computer Software Configuration Item (a term used in NASA or Military standards to describe a
product like a jet engine or a computer system)

Fidelity: Integrity of testbed. For example: low fidelity testbed may have a simulator rather than actual
spacecraft hardware. The highest fidelity testbed is the actual hardware being tested

Flight Operational Readiness Review (ORR): Review by an independent team of engineers who have
not worked on the project. Sometimes called Flight Readiness Review (FRR).

Mission critical: Loss of capability leading to possible reduction in mission effectiveness10

Modified Condition And Decision Coverage (MCDC): Defined as checking that “every point of entry
and exit in the program has been invoked at least once, every condition is a decision in the program has
taken all possible outcomes at least once, every decision has been shown to independently affect that
decision’s outcome. A condition is shown to independently affect a decision’s outcome by varying just
that condition while holding fixed all other possible conditions.”9

Nominal: Expected behavior for no failure, for example: nominal behavior for a valve may be “open” or
“shut.”

Off-Nominal: Unexpected failure behavior, for example: off-nominal behavior for a valve may be “stuck
open” or “stuck shut.”

Process-oriented approach: The traditional process software must undergo in order to be approved or
certified. This process is described in various standards, but is generally the same in that regulatory
authorities will be looking for evidence that all potential hazards have been identified and that appropriate
steps have been taken to deal with them.

Product-oriented approach: Viewing software components like widgets that can be proven correct via
mathematical proofs rather than looking for evidence that all potential hazards have been identified and
mitigated. Underwriter’s Laboratory uses a product-oriented approach for certifying that fireproof doors
will not burn.

Safety-critical: Failure or design error could cause a risk to human life10

Software Synthesis: Technique for generating software from formal logic

Test Readiness Review (TRR): Review by the internal project team

Validation: Process of determining that the requirements are correct and complete

Verification: Evaluation of results of a process to ensure correctness and consistency with respect to the
input and standards provided to that process

White Box Testing: Design-driven testing where engineers examine internal workings of code

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 32

10. APPENDIX C: SAMPLE SYNTHESIZED SDD

The was generated automatically from the http://ase.arc.nasa.gov/autobayes/autobayes.html by following
these instructions:

Go to select specification and get the "mix-gaussians"
Then you should see the specification in the edit window. Then press
"submit" and after a while (and some messages) the system should say
"done" and you can click at the "see design document"

10.1. Software Design Document
Module name: mog
Module title: Mixture of Gaussians
Date generated: Thu Feb 20 17:09:57 2003
User: 143.232.64.118
Version of AutoBayes: 0.0.1

10.1.1. Summary
This document describes the specification, design and generation of code for the module mog. The code
and this document has been automatically generated by the tool AutoBayes/AutoFilter.

This document has been generated automatically and should not be modified manually.

10.1.2. Input Specification
The following sections list and describe the input specification for the module mog. This input
specification comprises the entire information which is provided by the user for the generation of the
module mog. Other options, which can influence the operation of AutoBayes are entered via command-
line options and are listed in the specification below.

The following section lists the textual input specification for the module mog. For details on the syntax and
semantics of the input language see AutoBayes-input-language The subsequent section shows the
Bayesian network which is underlying this input specification.

10.1.2.1. Textual Input Specification

1 /**AutoBayesFile***
2
3 Filename [$Source: /home/schumann/CVS/PN/examples/mixture/mix-gaussians.ab,v $]
4
5 Synopsis [Mixture of Gaussians]
6
7 Author [

September 25, 2003

http://ase.arc.nasa.gov/autobayes/autobayes.html

Product-oriented Software Certification Process for Software Synthesis Page 33

8 Wray Buntine
9 Bernd Fischer
10 Tom Pressburger
11 Johann Schumann
12]
13
14 Revision [$Id: mix-gaussians.ab,v 2.3 2001/11/21 18:35:18 fisch Exp $]
15
16 Description [
17
18 This is the ''classical'' finite mixture of Gaussians model. It
19 assumes n_points observed data points x(.) which are generated by
20 n_classes different normal distributions (i.e., classes); the
21 generating class c(i) for a datapoint x(i) is hidden. The relative
22 class frequencies are given by the unknown probability vector rho(.).
23 The task is to summarize the classes by their mean values mu(.) and
24 standard distributions sigma(.) as well as to estimate their
25 frequencies rho(.).
26 This model fixes the n_classes as 3 and specifies a tolerance
27 which is appropriate for 3 classes and ~600 data points.
28
29]
30
31 References [
32
33 B. S. Everitt and D. J. Hand, Finite Mixture Distributions,
34 Chapman & Hall, 1981.
35
36]
37
38 See also []
39
40 Known Bugs [
41
42 The distribution statement for c should also allow the shorthands
43

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 34

44 c(_) ~ discrete(rho).
45
46 and
47
48 c(_) ~ discrete(rho(0..n_classes-1)).
49
50]
51
52 Modification [
53
54 $Log: mix-gaussians.ab,v $
55 Revision 2.3 2001/11/21 18:35:18 fisch
56 Added constraint on n_points.
57
58 Revision 2.2 2001/08/22 00:32:20 fisch
59 Minor syntactical changes.
60
61 Revision 2.1 2000/11/07 21:12:17 fisch
62 Completed documentation.
63
64 Revision 2.0 2000/10/31 19:23:52 fisch
65 CVS version cleanup
66
67 Revision 1.1 2000/08/29 00:48:23 fisch
68 initial revision in new syntax, renamed from mixture-gaussians.pl
69
70 Revision 1.1 1999/10/22 18:51:13 schumann
71 initial revision
72
73]
74
75
76 ***/
77
78 model mog as 'Mixture of Gaussians'.
79

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 35

80 %
81 % Model parameters
82 %
83
84 const nat n_points as 'Number of data points'.
85 where 0 < n_points.
86
87 const nat n_classes := 3 as 'Number of classes'.
88 where 0 < n_classes.
89 where n_classes << n_points.
90
91
92 %
93 % Class probabilities
94 %
95
96 double rho(0..n_classes-1).
97 where 0 = sum(I := 0 .. n_classes-1, rho(I))-1.
98
99
100 %
101 % Class parameters
102 %
103
104 double mu(0..n_classes-1).
105
106 double sigma(0..n_classes-1).
107 where 0 < sigma(_).
108
109
110 %
111 % Hidden variable
112 %
113
114 double c(0..n_points-1) as 'class assignment vector'.
115

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 36

116 %%% change into new notation:
117 %%% c(_) ~ discrete(rho) or c(_) ~ discrete(rho(0..n_classes-1))
118 c(_) ~ discrete(vector(I := 0 .. n_classes-1, rho(I))).
119
120
121 %
122 % Data
123 %
124
125 const double tolerance := 0.0003 as 'tolerance for appr. 600 data points'.
126
127 data double x(0..n_points-1).
128
129 x(I) ~ gauss(mu(c(I)), sigma(c(I))).
130
131
132 %
133 % Goal
134 %
135
136 max pr(x|{rho,mu,sigma}) for {rho,mu,sigma}.

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 37

11. APPENDIX D: COMPARISON OF SYNTHESIZED SDD TO
STANDARDS

The following table contains a comparison of the Synthesized SDD shown in Appendix C to the software
design guidelines found in IEEE 12207, MIL STD 498 and DO-178B.

The table is organized as follows:

• Synthesis Section – name and description of content for each section in the Synthesized SDD.

• IEEE 12207 Section – applicable IEEE 12207 section from 12207.1 Paragraph 6.16

• MIL STD 498 Section – applicable MIL STD 498 paragraph from the SOFTWARE DESIGN
DESCRIPTION (SDD) Data Information Description (DID) Identification Number: DI-IPSC-81435

• DO-178B Section – applicable DO-178B paragraph

Table 2: Comparison of Synthesized SDD to Standards

Synthesis Section IEEE Section MIL STD 498 Section DO-178B Section

Document Title Paragraph 6.16.3a Title page or identifier Paragraph 11.10a

Module Name Paragraph 6.16.3a and
h (to prevent duplicate
names, add an
identification number
along with the name)

Section 1.1 Scope
Identification

Paragraph 11.10a

Module Title Paragraph 6.16.3a Section 1.1 Scope
Identification

Paragraph 11.10a

Date Generated Paragraph 6.16.3a Section 1.1 Scope
Identification

Paragraph 11.10i

User Paragraph 6.16.3a Section 1.1 Scope
Identification

Version of AutoBayes Section 2 Referenced
Documents

Summary Section 1.3 Document
overview

Input Specification Paragraph 6.16.3b, c Section 4 Architecture
Design

Paragraph 11.10c

Code Generation
Process

Paragraph 6.16.3f Section 4.1 CSCI
Components and Section 6
Requirements Traceability

Paragraph 11.10b, c,
d, e, f, g, h, I and j

Intermediate Code

Final Code Paragraph 6.16.3e Section 4.2 Concept of
execution

Paragraph 11.10b, c,
d, e, f, g, h, I and j

Compiler
Warnings/Errors

 Note: Review would be
required should any
warnings or errors result
from compilation to
evaluate the risk associated
with the error or warning

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 38

Unlike human generated code, synthesized code provides proof obligations to ensure that the generated
software is accurate. This feature is above and beyond the content requirements of any current
standards. Conclusions and recommendations specific to each standard are described in the following
sections.

11.1. MIL STD 498

11.1.1. Conclusions
For military projects following MIL STD 498, the synthesized document may be best suited for use as an
attachment for SDD Section 4.1, CSCI Components. The SDD would contain a brief description of the
synthesized module with a reference to the synthesized document.

11.1.2. Recommendations
Should the intent be to generate a document that rigorously complies with MID STD 498 SDD content
requirements, the Synthesis tool should be enhanced to include the following items:

• Table of Contents
• Page numbers
• System overview
• DID Section 2 - Referenced Documents: a list of upstream or downstream documents (in the Life

Cycle) like Software Requirements or Specification documents. The reference to the “Version of
AutoBayes” is also relevant to this section.

• Section 3 – CSCI-wide design decisions: Computer Software Configuration Item (CSCI) design
decisions include how software will behave from the user’s point of view in meeting its
requirements and other decisions affecting the selection and design of the software units
(element in the design like an object, module, class or database).

Design decisions that respond to requirements designated critical, such as those for safety,
security, or privacy, shall be placed in separate subparagraphs.

If a design decision depends upon system states or modes, this dependency shall be indicated.
Design conventions needed to understand the design shall be presented or referenced.

Examples of CSCI-wide design decisions are the following:

1. Design decisions regarding inputs the CSCI will accept and outputs it will produce
including interfaces with other systems and users. May reference the Interface Design
Descriptions (IDDs).

2. Design decisions on CSCI behavior in response to each input or condition, including
actions the CSCI will perform, response times and other performance characteristics,
description of physical systems modeled, selected equations/algorithms/rules, and
handling of disallowed inputs or conditions.

3. Design decisions on how databases/data files will appear to the user. May reference
Database Design Descriptions (DBDDs)

4. Selected approach to meeting safety, security, and privacy requirements

5. Other CSCI-wide design decisions made in response to requirements, such as selected
approach to providing required flexibility, availability, and maintainability.

• DID Section 4.1e: Add description of planned hardware resources (processor capacity, memory
capacity, input/output device, communications/network equipment…) and utilization of hardware
like typical usages, worst-case usage, assumption of certain events and any special
considerations affecting utilization

• 4.3 Interface design – Add description of interface characteristics

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 39

11.2. IEEE 12207

11.2.1. Conclusions
For projects following IEEE 12207, the synthesized document may be best suited for use as an
attachment for the SDD document unless fields could be added for data entry (or cut and paste) of
missing information listed in the following section.

11.2.2. Recommendations
Should the intent be to generate a document that rigorously complies with IEEE 12207.1 Paragraph 6.16
content recommendations, the synthesis tool should be enhanced to include the following items:

o Static relationships of software units

o Rationale for software item design

o Reuse element identification (add a number to the module name)

o Define types of errors that are not specified in the software requirements and the handling of
those errors

o Add Life cycle data characteristics per Annex H of IEEE/EIA 12207.0

11.3. DO-178B

11.3.1. Conclusions
For projects adhering to DO-178B, the synthesized document may be best suited for use as an
attachment for the SDD document unless fields could be added for data entry (or cut and paste) of
missing information listed in the following section.

11.3.2. Recommendations
Should the intent be to generate a document that rigorously complies with DO-178B Paragraph 11.10
content recommendations, the Synthesis tool should be enhanced to include the following items:

o Rationale for design decisions that are traceable to safety-related system requirements

o Resource limitations, the strategy for managing each resource and its limitations, the margins,
and the method for measuring those margins, for example, timing and memory

o Scheduling procedures and inter-processor/inter-task communication mechanisms, including
time-rigid sequencing, preemptive scheduling, Ada rendezvous and interrupts

o Details for their implementation, for example, software data loading, user-modifiable software, or
multiple-version dissimilar software

o Partitioning methods and means of preventing partition breaches

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 40

12. APPENDIX E: SAFETY DOCUMENT GENERATOR

This appendix was written by Ewen Denney and Ram Prasad Venkatesan.

Formal Certification is the idea that a mathematical proof of some property of a piece of software can be
regarded as a certificate of correctness which, in principle, can be subjected to external scrutiny. In
practice, proofs themselves are unlikely to be of much interest to engineers. Moreover, formal
mathematical proofs are unlikely to blend well with traditional certification approaches. However, it is
possible to use the information obtained from a detailed mathematical analysis of some software to
produce a simple textual report.

In the Automated Software Engineering group at NASA Ames, Ewen Denney and Ram Prasad
Venkatesan have developed a Safety Document Generator (SDG) that automatically generates "safety
reports" for each part of a synthesized program with respect to a given safety policy. The document
generator is intended to be generic and currently supports two safety policies: safety with respect to array
bounds and safety with respect to initialization of variables.

The document generator generates the explanations from the verification conditions generated by a so-
called Verification Condition Generator (VCG). The verification conditions are used to identify every
construct of the program that needs to be analyzed for safety, and provide an explanation for its safety
with respect to a given safety property. A typical safety explanation traces the components of each
relevant term to its ground definition within the program, explaining the safety of all the intermediate terms
along the path. The user is also provided with the flexibility of restricting the explanations to the safety of
specific lines or specific expressions in the program.

The safety document generator is intended to create safety documents for the code synthesized by the
AutoBayes and AutoFilter systems which are being developed by the ASE group.

EXAMPLE:

Consider the following simple program:

0 proc(eg){

1 a[10] : int
2 b : int ;
3 c : int ;
4 d : int ;

5 b = 1 ;
6 c = 2 ;
7 d = b*b + c*c ;

8 for(i=0;i<10;i++)
 {
9 if(i < 5)
 {
10 a[d+i] = d ;
 }
 else
 {
11 a[2*d-1-i] = d ;
 }
 }
 }

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 41

12.1. SAFETY EXPLANATIONS

The following is a safety explanation for the above code:

ARRAY BOUNDS

PROGRAM : eg
SAFETY POLICY : Array bounds
DATE : 08-06-2003

 ARRAY ACCESSES IN THE PROGRAM

 a[d+i] 10
 a[2*d-1-i] 11

 SAFETY EXPLANATIONS

The access a[d+i] at line 10 (if the condition at line 9 is true) is
safe as the term d is evaluated from d=b*b+c*c at line 7; the term b
is evaluated from b=1 at line 5; the term c is evaluated from c=2 at
line 6; for each value of the loop index i from 0 to 9 at line 8; d+i
is within 0 and 9; and hence the access is within the bounds of the
array defined at line 1.

The access a[2*d-1-i] at line 11 (if the condition at line 9 is false)
is safe as the term d is evaluated from d=b*b+c*c at line 7; the term
b is evaluated from b=1 at line 5; the term c is evaluated from c=2 at
line 6; for each value of the loop index i from 0 to 9 at line 8;
2*d-1-i is within 0 and 9; and hence the access is within the bounds
of the array defined at line 1.

INITIALIZATION OF VARIABLES

PROGRAM : eg
SAFETY POLICY : Initialization of variables
DATE : 08-06-2003

CONSTRUCTS CONSIDERED FOR INITIALIZATION SAFETY

b 5
c 6
d 7
i 8
i<5 9

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 42

a 10
a 11

 SAFETY EXPLANATIONS

The assignment b=1 at line 5 is safe;

The assignment c=2 at line 6 is safe;

The assignment d=b*b+c*c at line 7 is safe; the term b is initialized
from b=1 at line 5; the term c is initialized from c=2 at line 6;

The loop index i ranges from 0 to 9 and is initialized at line 8;

The conditional expression i<5 appears at line 9; the loop index i
ranges from 0 to 9 and is initialized at line 8;

The assignment a[d+i]=d at line 10 is safe (if the condition at line 9
is true) ; the term d is initialized from d=b*b+c*c at line 7; the
term b is initialized from b=1 at line 5; the term c is initialized
from c=2 at line 6; the loop index i ranges from 0 to 9 and is
initialized at line 8;

The assignment a[2*d-1-i]=d at line 11 is safe (if the condition at
line 9 is false) ; the term d is initialized from d=b*b+c*c at line 7;
the term b is initialized from b=1 at line 5; the term c is
initialized from c=2 at line 6; the loop index i ranges from 0 to 9
and is initialized at line 8;

September 25, 2003

Product-oriented Software Certification Process for Software Synthesis Page 43

13. REFERENCES

1 Interview with Dale Mackall, Sr. Dryden Flight Research Center Verification and Validation engineer on
January 16, 2003

2 Software Considerations in Airborne Systems and Equipment Certification, Document No RTCA
(Requirements and Technical Concepts for Aviation) /DO-178B, December 1, 1992. (Copies of this
document may be obtained from RTCA, Inc., 1140 Connecticut Avenue, Northwest, Suite 1020,
Washington, DC 20036-4001 USA. Phone: (202) 833-9339)

3 Email from Dr. Ewen Denney dated April 4, 2003

4 C. Kreitz. Program synthesis. In W. Bibel and P. H. Schmitt (eds.), Automated Deduction - A Basis for
Applications, pp.105–134. Kluwer, 1998.

5 B. Fischer and J. Schumann. AutoBayes: A system for generating data analysis programs from
statistical models. J. Functional Programming, 2002. To appear. http://ase.arc.nasa.gov/people/fischer/.

6 Bernd Fischer and Johann Schumann, Automating the Analysis of Planetary Nebulae Images In
proceedings ASE 2003

7 Bernd Fischer and Johann Schumann, Automated Synthesis of Statistical Data Analysis Programs,
ASTEC seminar June 5, 2002

8 Johann Schumann, Bernd Fischer, Mike Whalen, Jon Whittle, Certification Support for Automatically
Generated Programs, Proceedings of the 36th Hawaii International Conference on System Sciences

9 Software Considerations in Airborne Systems and Equipment Certification, Document No RTCA
(Requirements and Technical Concepts for Aviation) /DO-178B, December 1, 1992. (Copies of this
document may be obtained from RTCA, Inc., 1140 Connecticut Avenue, Northwest, Suite 1020,
Washington, DC 20036-4001 USA. Phone: (202) 833-9339)

10 Interview with Dale Mackall, Sr. Dryden Flight Research Center Verification and Validation engineer on
January 16, 2003

September 25, 2003

http://www.astec.uu.se/Seminars/

REPORT DOCUMENTATION PAGE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

Form Approved
OMB No. 0704-0188

12b. DISTRIBUTION CODE12a. DISTRIBUTION/AVAILABILITY STATEMENT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

1. AGENCY USE ONLY (Leave blank)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

17. SECURITY CLASSIFICATION
 OF REPORT

14. SUBJECT TERMS

13. ABSTRACT (Maximum 200 words)

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

11. SUPPLEMENTARY NOTES

Unclassified Unclassified

Unclassified — Unlimited
Subject Category 61 Distribution: Standard
Availability: NASA CASI (301) 621-0390

NASA CR-2004-212819

February 2004

Nelson Consulting
MS 269-1
Ames Research Center
Moffett Field, CA 94035-1000

National Aeronautics and Space Administration
Washington, DC 20546-0001

48

Product-oriented Software Certification Process for Software Synthesis

 Stacy Nelson (Nelson Consulting)

Software Certification, Aerospace Software, Verification and Validation;Software
Safety, Software Development

Contractor Report

Point of Contact: Stacy Nelson Ames Research Center, MS 269-1, Moffett Field, CA 94035-1000
 (650) 604-3588

QSS NAS2-00065, 3006-NEL-
001

The purpose of this document is to propose a product-oriented software certification process to facilitate use of
software synthesis and formal methods. Why is such a process needed? Currently, software is tested until
deemed bug-free rather than proving that certain software properties exist. This approach has worked well in
most cases, but unfortunately, deaths still occur due to software failure. Using formal methods (techniques from
logic and discrete mathematics like set theory, automata theory and formal logic as opposed to continuous math-
ematics like calculus) and software synthesis, it is possible to reduce this risk by proving certain software proper-
ties. Additionally, software synthesis makes it possible to automate some phases of the traditional software
development life cycle resulting in a more streamlined and accurate development process.

	ProductOrientSWCert body.pdf
	ProductOrientSWCert body.pdf
	EXECUTIVE SUMMARY
	INTRODUCTION
	Certifiable Software Synthesis
	Other Standards Promoting Formal Proofs
	Canadian Nuclear Power Industry: CE-1001-STD
	European Defence Industry: DEF STAN 00-55
	European Transportation Industry: EN 50128

	Traditional Process-Oriented Certification
	Safety Case
	Underwriter’s Laboratory (UL) Product-Oriented Approach
	Product-oriented versus Process-oriented Approach

	PRODUCT-ORIENTED LIFE CYCLE
	Typical Process-Oriented Life Cycle
	System Requirements
	System Architectural Design
	Software Requirements Analysis
	Software Architectural Design
	Software Detailed Design
	Software Coding
	Software Unit Testing
	Software Integration
	Software Qualification
	System Integration
	System Qualification Testing

	Proposed Product-Oriented Life Cycle

	PRODUCT-ORIENTED SAFETY CASE
	APPROVAL PROCESS
	TOOLS
	For more information
	How Synthesis Tools Compare To Traditional V&V Tools
	Coverage
	Other testing strategies

	Certification of Synthesis Tools

	ARTIFACTS
	APPENDIX A: ACRONYMS
	APPENDIX B: GLOSSARY
	APPENDIX C: SAMPLE SYNTHESIZED SDD
	Software Design Document
	Summary
	Input Specification

	APPENDIX D: COMPARISON OF SYNTHESIZED SDD TO STANDARDS
	MIL STD 498
	Conclusions
	Recommendations

	IEEE 12207
	Conclusions
	Recommendations

	DO-178B
	Conclusions
	Recommendations

	APPENDIX E: SAFETY DOCUMENT GENERATOR
	SAFETY EXPLANATIONS

	REFERENCES

